Integral zeros of a polynomial with linear recurrences as coefficients
نویسندگان
چکیده
منابع مشابه
Definite Sums as Solutions of Linear Recurrences With Polynomial Coefficients
We present an algorithm which, given a linear recurrence operator L with polynomial coefficients, m ∈ N \ {0}, a1, a2, . . . , am ∈ N \ {0} and b1, b2, . . . , bm ∈ K, returns a linear recurrence operator L ′ with rational coefficients such that for every sequence h,
متن کاملBounds for Linear Recurrences with Restricted Coefficients
This paper derives inequalities for general linear recurrences. Optimal bounds for solutions to the recurrence are obtained when the coefficients of the recursion lie in intervals that include zero. An important aspect of the derived bounds is that they are easily computable. The results bound solutions of triangular matrix equations and coefficients of ratios of power series.
متن کاملThe Real Zeros of a Random Polynomial with Dependent Coefficients
Abstract. Mark Kac gave one of the first results analyzing random polynomial zeros. He considered the case of independent standard normal coefficients and was able to show that the expected number of real zeros for a degree n polynomial is on the order of 2 π logn, as n → ∞. Several years later, Sambandham considered two cases with some dependence assumed among the coefficients. The first case ...
متن کاملA Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases
In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...
متن کاملLinear Recurrences with Polynomial Coefficients and Computation of the Cartier-Manin Operator on Hyperelliptic Curves
We improve an algorithm originally due to Chudnovsky and Chudnovsky for computing one selected term in a linear recurrent sequence with polynomial coefficients. Using baby-steps / giant-steps techniques, the nth term in such a sequence can be computed in time proportional to √ n, instead of n for a naive approach. As an intermediate result, we give a fast algorithm for computing the values take...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 2021
ISSN: 0019-3577
DOI: 10.1016/j.indag.2021.03.001